今天我们来看一下拐点是什么意思,以下6个关于拐点是什么意思的观点希望能帮助到您找到想要的百科知识。
本文目录
拐点的定义是什么?
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
在生活中借指事物的发展趋势开始改变的地方(例如:经济运行出现回升拐点)拐点在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点),若该曲线图形的函数在拐点有二阶导数,则二阶导数必为零或不存在。在现实生活中通常指事物的发展趋势开始改变的地方。
拐点指的是什么意思
拐点是数学名词,指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。在生活中借指事物的发展趋势开始改变的地方。
在新冠肺炎疫情期间,各大新闻媒体频频提到了“疫情拐点”一词,例如“我们期盼的疫情拐点将要出现”、“一个月内疫情拐点或将到来”、“正月十五前疫情可能出现拐点”等等。那么这个拐点是什么意思呢?下面咱们就来说一说。
01
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
02
疫情拐点是什么?
拐点在生活中借指事物的发展趋势开始改变的地方。疫情拐点就是指疫情得到控制,疑似感染数下降、发病数下降是拐点出现的标志。
03
疫情拐点的影响因素是什么?
所有的感染都会有一个下降的过程。下降的时间取决于群体免疫力的高低和采取的干预措施是否有效。
群体免疫力即人群对于传染病病原体的侵入和传播的抵抗力,用人群中有免疫力人口占全部人口的比例来反映。
闻玉梅院士把群体免疫力的提高视为拐点出现的最重要因素。
因此,被感染者早发现、早隔离;医疗团队研发出新型冠状病毒的疫苗、加强接触者追踪、检疫隔离;人民群众佩戴口罩,尽量避免人群接触、规律作息,增强自身抵抗力,这些措施都能够促进拐点尽早出现。
04
疫情拐点出现的时间如何得出?
拐点的出现可以根据流行病学模型来得出,通过建立数学模型拟合新冠肺炎的累计发病数据,来推测发病高峰、发病持续时间、累计发病人数,并绘制出流行曲线,掌握疫情动态。
但是,模型中的分析及预测需要一定的前提条件,比如人和人之前感染疾病的可能性差别不大、传播途径易于实现及综合预防指数相对不变。这些前提条件中的任何一项发生改变,都会影响到流行高峰及流行态势的变化。
目前,已经有英国兰开斯特大学、美国约翰霍普金斯大学、香港大学等高校的多个研究团队,通过建模去评估、预测病毒的传播路径、速率,更好的掌握此次新型冠状病毒肺炎的发病影响及流行特征。
实际上,任何模型都只是一种分析和预测的工具,它是根据已有的数据和信息进行的推测,它的结论可能会相对准确甚至是精确,这对人们判断疫情走势以及作出决策具有重大参考意义,但是也须明白,所有的预测模型都存在局限,我们仍然无法先知先觉地得出疫情拐点的确切日期。疫情拐点可能对个体的重要性有限,但是对于整个防疫的决策部署还是很重要的。从专家说法来看,尽管对“拐点”无法精确预测,但都不会等太久了。
什么是拐点
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。
若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
拐点是什么?
拐点在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点).若该曲线图形的函数在拐点有二阶导数,则二阶导数必为零或不存在. 在生活中借指事物的发展趋势开始改变的地方(例如:经济运行出现回升拐点)
拐点是什么
拐点,生活用语,在生活中借指事物的发展趋势开始改变的地方(例如:经济运行出现回升拐点)。
在生活中借指事物的发展趋势开始改变的地方(例如:经济运行出现回升拐点)。
在生活中,拐点多用来说明某种情形持续上升一段时间后开始下降或回落。在数学上这句话是错的,这种点叫极值点、稳定点或者叫驻点;所以,有了经济的拐点,房地产的拐点,以及股市的拐点。
数学用语:拐点
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。
若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
以上内容参考 百度百科-拐点
什么是拐点,数学中有什么特别意义
定义:拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。
意义:若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数yˊ=fˊ(x)仍然是x的函数,则y′′=f′′(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。
扩展资料
二阶导数的几何意义
1、切线斜率变化的速度,表示的是一阶导数的变化率。
2、函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。这里以物理学中的瞬时加速度为例:
根据定义有可如果加速度并不是恒定的,某点的加速度表达式就为:
a=limΔt→0 Δv/Δt=dv/dt(即速度对时间的一阶导数),又因为v=dx/dt 所以就有:
a=dv/dt=d²x/dt² 即元位移对时间的二阶导数。将这种思想应用到函数中,即是数学所谓的二阶导数
f'(x)=dy/dx (f(x)的一阶导数)
f''(x)=d²y/dx²=d(dy/dx)/dx (f(x)的二阶导数)
参考资料来源:百度百科-拐点
今天的百科内容先分享到这里了,读完本文《「拐点是什么意思」股市拐点是什么意思》之后,是否是您想找的答案呢?想要了解更多百科知识,敬请关注宝百科,您的关注是给小编最大的鼓励。