今天我们来看一下棱柱的定义,以下6个关于棱柱的定义的观点希望能帮助到您找到想要的百科知识。
本文目录
棱柱的定义是什么?
棱柱是几何学中的一种常见的三维多面体,指两个平行的平面被三个或以上的平面所垂直截得的封闭几何体。
若用于截平行平面的平面数为n,那么该棱柱便称为n-棱柱。如三棱柱就是由两个平行的平面被三个平面所垂直截得的封闭几何体。
扩展资料:
棱柱的性质:
1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。
2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。
3)过棱柱不相邻的两条侧棱的截面都是平行四边形。
4)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。参考资料:百度百科-棱柱
什么是棱柱?
棱柱是几何学中的一种常见的三维多面体,指两个平行的平面被三个或以上的平面所垂直截得的封闭几何体。 题中1、5数属于棱柱。
若用于截平行平面的平面数为n,那么该棱柱便称为n-棱柱。如三棱柱就是由两个平行的平面被三个平面所垂直截得的封闭几何体。
1、斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。
2、直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。
3、正棱柱:底面是正多边形的直棱柱叫做正棱柱。
4、平行六面体:底面是平行四边形的棱柱。
5、直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。
6、长方体:底面是矩形的直棱柱叫做长方体。
扩展资料:
棱柱性质:
1、棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。
2、棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。
3、过棱柱不相邻的两条侧棱的截面都是平行四边形。
4、直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。
参考资料来源:百度百科——棱柱
初中数学棱柱的定义
有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。(注:由面平行和线平行(“有两个面互相平行”与“并且每相邻两个四边形的公共边都互相平行”)这两个条件可以证明“其余各面都是四边形”中的四边形为平行四边形) 两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。两个侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。
含义
折叠介绍
棱柱棱柱是多面体中最简单的一种,我们常见的一些物体,例如三棱镜、方砖以及螺杆的头部,它们都呈棱柱的形状。
棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱用表示底面各顶点的字母来表示。
棱柱的底面:棱柱中两个互相平行的面,叫做棱柱的底面。
棱柱的侧面:棱柱中除两个底面以外的其余各个面都叫做棱柱的侧面。
棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱。
折叠形成方式
棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。
折叠顶点
在棱柱中,侧面与底面的公共顶点叫做棱柱的顶点。
棱柱的对角线:棱柱中不在表面同一平面上的两个顶点的连线叫做棱柱的对角线。
棱柱的高:棱柱的两个底面的距离叫做棱柱的高。
棱柱的对角面:棱柱中过不相邻的两条侧棱的截面叫做棱柱的对角面。
折叠分类
斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。
直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。
正棱柱:底面是正多边形的直棱柱叫做正棱柱。
平行六面体:底面是平行四边形的棱柱。
直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。
长方体:底面是矩形的直棱柱叫做长方体。
棱柱的定义 棱柱的定义是什么
1、棱柱是几何学中的一种常见的三维多面体,指两个平行的平面被三个或以上的平面所垂直截得的封闭几何体。 2、若用于截平行平面的平面数为n,那么该棱柱便称为n-棱柱。如三棱柱就是由两个平行的平面被三个平面所垂直截得的封闭几何体。
请问棱柱的定义
定义1——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围城的几何体叫棱柱。
定义2——上下底面平行且全等,侧棱平行且相等的封闭几何体叫棱柱。
棱柱是几何学中的一种常见的三维多面体,若棱柱的底面为n边形,那么该棱柱便称为n-棱柱。如三棱柱就是底面为三角形的棱柱。
扩展资料
棱柱相关术语介绍
1、三棱镜
三棱镜是光学上横截面为三角形的透明体。它是由透明材料作成的截面呈三角形的光学仪器,属于色散棱镜的一种,能够使复色光在通过棱镜时发生色散。
2、几何体
亦称立体,是立体几何的基本概念之一。几何体概念产生于人们对客观世界中各种物体的数学抽象,当人们只考虑物体的形状、大小、位置关系等数学性质,而不考虑它的物理的、化学的、生物的、社会的等属性时,就获得几何体的概念。
参考资料来源:百度百科——棱柱
参考资料来源:百度百科——三棱镜
参考资料来源:百度百科——几何体
棱柱的定义和性质
棱柱是几何学中的一种常见的三维多面体,指两个平行的平面被三个或以上的平面所垂直截得的封闭几何体。
若用于截平行平面的平面数为n,那么该棱柱便称为n-棱柱。如三棱柱就是由两个平行的平面被三个平面所垂直截得的封闭几何体。
性质
1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。
2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。
3)过棱柱不相邻的两条侧棱的截面都是平行四边形。
4)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。
今天的百科内容先分享到这里了,读完本文《「棱柱的定义」正四棱柱的定义》之后,是否是您想找的答案呢?想要了解更多百科知识,敬请关注宝百科,您的关注是给小编最大的鼓励。