今天我们来看一下几何体,以下6个关于几何体的观点希望能帮助到您找到想要的百科知识。
本文目录
几何体是什么
几何体亦称立体,是立体几何的基本概念之一。几何体概念产生于人们对客观世界中各种物体的数学抽象。
当人们只考虑物体的形状、大小、位置关系等数学性质,而不考虑它的物理的、化学的、生物的、社会的等属性时,就获得几何体的概念。
在几何学中,人们把若干几何面所围成的有限形体称为几何体,围成几何体的面称为几何体的界面或表面,不同界面的交线称为几何体的棱线,不同棱线的交点称为几何体的顶点。
扩展资料:
平面立体由若干平面围成的基本几何体称为平面立体。平面立体主要有棱柱和棱锥两种。棱柱的棱线互相平行,棱锥的棱相交于一点,棱锥被截顶则形成棱台。
平面立体以其棱线数命名,如四棱柱、六棱柱、五棱锥、三棱锥、四棱台等。如图3至图6所示,棱柱是由棱面和顶面、底面所围成,相邻两棱面的交线。
棱锥是由棱面和底面所围成,各棱面是有一个公共顶点的三角形。
参考资料来源:百度百科-几何体
生活中常见的几何体有哪些?
具体如下:
1、骰子(正方体)
正方体的特点:有8个顶点,6个面。每个面面积相等,每个面都由正方形组成。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)
2、火柴盒(长方体)
长方体的特点:有8个顶点,6个面。相对的两个面面积相等。有12条边,相对的4条棱的棱长相等。
3、石柱(圆柱体)
圆柱体的特点:上下两个面为大小相同的圆形。有一个曲面叫侧面。侧面沿高展开后为长方形或正方形··沿直线是平行四边形··随意展开是不规则图形。有无数条高,这些高的长度都相等。
基本几何体的分类:
体是由面围成的。面有平面,有曲面。例如长方体是由六个平面围成的;球是由一个曲面围成的;圆柱是由一个曲面和两个平面围成的。按构成体的主要元素——面的特点,可以把体分成两类:
第一类是有曲面参与其中的曲面几何体,也称曲面立体,如:圆柱体、球体。
第二类是纯由平面围成的平面几何体,即由若干个平面多边形围成的多面体,如棱柱体、正方体。
几何体的分类 及各自特点
多面体和旋转体
多面体:有多个平面围成的几何体;棱柱,棱锥,棱台
旋转体:平面图形绕一条直线旋转而成的几何体,圆柱,圆锥,圆台,球
常见的几何体有哪些?简单几何体如何分类
常见的几何体有球、长方体、圆柱体、棱台体、棱锥体、圆锥体、球体等。
体是由面围成的。面有平面,有曲面。例如长方体是由六个平面围成的;球是由一个曲面围成的;圆柱是由一个曲面和两个平面围成的。按构成体的主要元素——面的特点,可以把体分成两类:
第一类是有曲面参与其中的曲面几何体,也称曲面立体,如:圆柱体、球体。
第二类是纯由平面围成的平面几何体,即由若干个平面多边形围成的多面体,如棱柱体、正方体。
扩展资料:
由若干平面围成的基本几何体称为平面立体。平面立体主要有棱柱和棱锥两种。棱柱的棱线互相平行,棱锥的棱线交于一点,棱锥被截顶则形成棱台。平面立体以其棱线数命名,如四棱柱、六棱柱、五棱锥、三棱锥、四棱台等 。
棱柱是由棱面和顶面、底面所围成,相邻两棱面的交线,称为棱线。棱锥是由棱面和底面所围成,各棱面是有一个公共顶点的三角形。
由曲面或曲面与平面围成的基本几何体称为曲面立体。常见曲面立体有圆柱、圆锥、圆球等。它们的曲表面可以看作是母线绕轴线回转而形成的,因此,这类曲面立体又称为回转体,其曲表面称为回转面。
参考资料:几何体-百度百科
几何体有哪些
几何体有棱柱、棱锥、棱台、圆锥、圆柱、圆台、球。是立体几何的基本概念之一。几何体概念产生于人们对客观世界中各种物体的数学抽象,当人们只考虑物体的形状、大小、位置关系等数学性质,而不考虑它的物理的、化学的、生物的、社会的等属性时,就获得几何体的概念,在几何学中,人们把若干几何面(平面或曲面)所围成的有限形体称为几何体,围成几何体的面称为几何体的界面或表面,不同界面的交线称为几何体的棱线,不同棱线的交点称为几何体的顶点,几何体也可看成空间中若干几何面分割出来的有限空间区域。
几何体有几种
几何体分为旋转体和多面体. 旋转体是指一平面绕一条固定的轴旋转一周形成的几何体,如:圆柱,圆锥,圆台,球... 多面体是指由多个平面两两相接,组成一个封闭的几何体,如:棱锥,棱台,正方体,长方体...
今天的百科内容先分享到这里了,读完本文《「几何体」几何体的外接球和内切球问题》之后,是否是您想找的答案呢?想要了解更多百科知识,敬请关注宝百科,您的关注是给小编最大的鼓励。