「非晶硅」非晶硅薄膜

2024-09-22 11:26:58 趣味生活 82阅读 回答者:来也
最佳答案今天我们来看一下非晶硅,以下6个关于非晶硅的观点希望能帮助到您找到想要的百科知识。本文目录非晶硅跟单晶硅和多晶硅有什么区别,非晶硅太阳能电池为什么要制备多结的非晶硅的优缺点什么是非晶硅?非晶硅的化学性

今天我们来看一下非晶硅,以下6个关于非晶硅的观点希望能帮助到您找到想要的百科知识。

本文目录

  • 非晶硅跟单晶硅和多晶硅有什么区别,
  • 非晶硅太阳能电池为什么要制备多结的
  • 非晶硅的优缺点
  • 什么是非晶硅?
  • 非晶硅的化学性质答案?
  • 非晶硅与多晶硅电子迁移率为什么差别那么大
  • 非晶硅跟单晶硅和多晶硅有什么区别,

    非晶硅跟单晶硅和多晶硅的区别:

    一、结构组成:

    1、单晶硅是硅的单晶体,具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。

    2、多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅,它是一种良好的半导材料。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。

    3、非晶硅是一种半导体,它是硅制备过程中不结晶的产物,它的结构内部有许多所谓的“悬键”,也就是没有和周围的硅原子成键的电子,这些电子在电场作用下就可以产生电流。

    二、物理性质:

    力学性质、电学性质等方面,非晶硅、多晶硅、单晶硅性能依次变好。

    三、光伏电池应用性能:

    在猛烈阳光底下,晶体式太阳能电池板较非晶体式能够转化多一倍以上的太阳能为电能,但晶体式的价格比非晶体式的昂贵两三倍以上,而且在阴天的情况下非晶体式反而与晶体式能够收集到差不多一样多的太阳能。

    参考资料来源:百度百科-非晶硅

    参考资料来源:百度百科-多晶硅

    参考资料来源:百度百科-单晶硅

    非晶硅太阳能电池为什么要制备多结的

    因为耐用。

    1、非晶硅具有较高的光吸收系数。特别是在0.3-0.75um的可见光波段,它的吸收系数比单晶硅要高出一个数量级。因而它比单晶硅对太阳能辐射的吸收率要高40倍左右,用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能。这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素。

    2、非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高。

    3、制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产。制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右。

    4、由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题。因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化。

    5、制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多。

    非晶硅的优缺点

    非晶硅的优点

    可以自由裁剪,因而可以充分利用合成的产品,不像晶体硅不能自由裁剪,制作成器件时材料磨下好多碎末,浪费很大;它的制作过程是气相沉积(1976,Spear法)——化氢热分解,分解时可以根据需要掺杂,如掺入磷化氢或硼化氢,由于是气相沉积,制作工艺条件容易进行自动化控制;它还可以制成很薄很薄的薄膜,而晶体硅却至少要达到几百微米的厚度。这是由于晶体硅是一种间接能带半导体,单靠光子并不能把电子激发到导带中去产生电流,而要靠所谓声子的帮助,这种所谓的声子来源于晶格振动,晶体做得太薄,产生的声子就太少,光电转化率就太低。

    非晶硅的致命缺点

    一是寿命短,在光的不断照射下会发生所谓Staebler-Wronski效应,光电转化效率会下降到原来的25%,这本质上正是非晶硅中有太多的以悬键为代表的缺陷,致使结构不稳定;

    二是它的光电转化效率远比晶体硅低。现今市场上的晶体硅的光电转化效率为12%,最近面世的晶体硅的光电转化效率已经提高到18%,在实验室里,甚至可以达到29%(对比:绿色植物的叶绿体的光电转化效率小于1%!),然而非晶硅的光电转化效率一直没有超过10%。

    什么是非晶硅?

    非晶硅双结非晶硅太阳能电池板 amorphous silicon α-Si

    又称无定形硅。单质硅的一种形态。棕黑色或灰黑色的微晶体。硅不具有完整的金刚石晶胞,纯度不高。熔点、密度和硬度也明显低于晶体硅。化学性质比晶体硅活泼。可由活泼金属(如钠、钾等)在加热下还原四卤化硅,或用碳等还原剂还原二氧化硅制得。结构特征为短程有序而长程无序的α-硅。纯α-硅因缺陷密度高而无法使用。采用辉光放电气相沉积法就得含氢的非晶硅薄膜,氢在其中补偿悬挂链,并进行掺杂和制作pn结。非晶硅在太阳辐射峰附近的光吸收系数比晶体硅大一个数量级。禁带宽度1.7~1.8eV,而迁移率和少子寿命远比晶体硅低。现已工业应用,主要用于提炼纯硅,制造太阳电池、薄膜晶体管、复印鼓、光电传感器等。

    目前研究得最多,实用价值最大的非晶态半导体主要有两类:即非晶态硅和硫属半导体。特别是非晶态硅,在理论上和应用方面的研究都非常活跃。

    晶态硅自50年代以来,已研制成功名目繁多、功能各异的各种固态电子器件和灵巧的集成电路。非晶硅(a—Si∶H)是一种新兴的半导体薄膜材料,它作为一种新能源材料和电子信息新材料,自70年代问世以来,取得了迅猛发展。非晶硅太阳能电池是目前非晶硅材料应用最广泛的领域,也是太阳能电池的理想材料,光电转换效率已达到13%,这种太阳能电池将成为无污染的特殊能源。1988年全世界各类太阳能电池的总产量35.2兆瓦,其中非晶硅太阳能电池为13.9兆瓦,居首位,占总产量的40%左右。与晶态硅太阳能电池相比,它具有制备工艺相对简单,原材料消耗少,价格比较便宜等优点。

    非晶硅的用途很多,可以制成非晶硅场效应晶体管;用于液晶显示器件、集成式a—Si倒相器、集成式图象传感器、以及双稳态多谐振荡器等器件中作为非线性器件;利用非晶硅膜可以制成各种光敏、位敏、力敏、热敏等传感器;利用非晶硅膜制做静电复印感光膜,不仅复印速率会大大提高,而且图象清晰,使用寿命长;等等。目前非晶硅的应用正在日新月异地发展着,可以相信,在不久的将来,还会有更多的新器件产生。

    非晶硅的制备:由非晶态合金的制备知道,要获得非晶态,需要有高的冷却速率,而对冷却速率的具体要求随材料而定。硅要求有极高的冷却速率,用液态快速淬火的方法目前还无法得到非晶态。近年来,发展了许多种气相淀积非晶态硅膜的技术,其中包括真空蒸发、辉光放电、溅射及化学气相淀积等方法。一般所用的主要原料是单硅烷(SiH4)、二硅烷(Si2H6)、四氟化硅(SiF4)等,纯度要求很高。非晶硅膜的结构和性质与制备工艺的关系非常密切,目前认为以辉光放电法制备的非晶硅膜质量最好,设备也并不复杂。以下简介辉光放电法。

    辉光放电法是利用反应气体在等离子体中发生分解而在衬底上淀积成薄膜,实际上是在等离子体帮助下进行的化学气相淀积。等离子体是由高频电源在真空系统中产生的。根据在真空室内施加电场的方式,可将辉光放电法分为直流电、高频法、微波法及附加磁场的辉光放电。在辉光放电装置中,非晶硅膜的生长过程就是硅烷在等离子体中分解并在衬底上淀积的过程。对这一过程的细节目前了解得还很不充分,但这一过程对于膜的结构和性质有很大影响。

    硫属半导体是S、Se或Te的金属化合物,或这几种化合物的混合物。这类材料在性质上属于半导体材料,但又象玻璃一样是非晶态。为与一般氧化物玻璃和结晶半导体相区别,故把它们称为玻璃半导体。又因为它们的主要成份是周期表中的硫属元素,故又称为硫属半导体,或叫硫属玻璃。硫属半导体的品种很多,迄今研究得比较充分的硫属半导体有As2S3、As2Se3、As2Te3及As2Se3—As2Te3、As2Se3—As2Te3—Te2Se等。硫属半导体的应用主要是基于它在光、热、电场等外界条件作用下引起的性能和结构变化。可用于制作太阳能电池、全息记录材料、光—电记录材料、复印机感光膜、硫属玻璃光刻胶等。

    非晶硅的化学性质答案?

    非晶硅又称无定形硅,是单机制硅的一种形态。为棕黑色或灰黑色的微晶体,非晶硅不具有完整的金刚石细胞。程度不高,熔点密度和硬度也明显低于晶体硅。其结构特征为短成有序而长城无序的a规。所谓长城无需据是指没有周期性,但非晶态材料也非胡乱排列,原子排列具有短程有序长程无序的规律。

    非晶硅与多晶硅电子迁移率为什么差别那么大

    液晶面板都可以划分为非晶硅与多晶硅 (Poly-Si) 两大类,它们最大的差距在于一项特性——电子迁移率。多晶硅的分子结构排列状态是整齐而有方向性的,像平整的路面可以开客车,而非晶硅则杂乱无章像崎岖山路,只能让人通行。理论上多晶硅的电子迁移率要比非晶硅快200-300倍。

    液晶面板的每一个像素都由薄膜晶体管组成电路来单独控制的,这个电路被集成在每个像素中。

    电子迁移率越高,电路就可以做的越小,像素的开口率越大,“开口”顾名思义就是像素显像的部分没有被遮挡,有效显示面积越大,单个像素体积也就能做的越小。

    在笔记本、手机屏幕上,可以集成的像素点也越多,从而实现更高分辨率。同时,由于电路变小了,透光率高,耗电也随之降低了。

    以前的手机和笔记本分辨率做不高、屏幕做不薄、边框做不窄,归根结底是电子迁移率导致开口率不大导致的。

    为了改善非晶硅电子迁移率低的问题,夏普等厂家推出了IGZO技术,改善了非晶硅的电子迁移率低的问题,不过,电子迁移率依然只有LTPS的1/2,甚至更低。

    扩展资料:

    影响电子迁移率的因素:

    1、晶格散射

    半导体晶体中规则排列的晶格,在其晶格点阵附近产生热振动,称为晶格振动。由于这种晶格振动引起的散射叫做晶格散射。温度越高,晶格振动越强,对载流子的晶格散射也将增强。在低掺杂半导体中,迁移率随温度升高而大幅度下降的原因就在于此。

    2、电离杂质散射

    杂质原子和晶格缺陷都可以对载流子产生一定的散射作用。但最重要的是由电离杂质产生的正负电中心对载流子有吸引或排斥作用,当载流子经过带电中心附近,就会发生散射作用。

    电离杂质散射的影响与掺杂浓度有关。掺杂越多,教流子和电离杂质相遇而被散射的机会也就越多。

    电离杂质散射的强弱也和温度有关。温度越高,载流子运动速度越大,因而对于同样的吸引和排斥作用所受影响相对就越小,散射作用越弱。这和晶格散射情况是相反的,所以在高掺杂时,由于电离杂质散射随温度变化的趋势与晶格散射相反,因此迁移率随温度变化较小。

    参考资料来源:百度百科-电子迁移率

    参考资料来源:百度百科-多晶硅

    参考资料来源:百度百科-非晶硅

    今天的百科内容先分享到这里了,读完本文《「非晶硅」非晶硅薄膜》之后,是否是您想找的答案呢?想要了解更多百科知识,敬请关注宝百科,您的关注是给小编最大的鼓励。

    声明:宝百科所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 9072867@qq.com
    广告位招租
    广告位招租