今天我们来看一下什么是混循环小数,以下6个关于什么是混循环小数的观点希望能帮助到您找到想要的百科知识。
本文目录
什么叫混循环小数?
循环节不是从小数部分第一位开始的,叫混循环小数。
循环节不是从小数部分第一位开始的,叫混循环小数。例如:1.2333333……、13.0984343434343……等。我们可以观察到:1.2333333……的循环节在3上面。
混循环小数最简分数a/b能化为混循环小数的充要条件是分母b既含有质因数2或5,又含有2和5以外的质因数。如:1/6,2/15等。
混循环小数的方法:
混循环小数化成分数的方法是:用第二个循环节以前的小数部分所组成的数,减去不循环部分所得的差,以这个差作为分数的分子;分母的前几位数字是9,末几位数字为0;9的个数与一个循环节的位数相同,0的个数与不循环部分的位数相同。
一个混循环小数的小数部分可以化成分数:这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0。其中9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
这种化的方法,比纯循环小数化成分数明显要复杂,但究其算理,仍依据纯小数化成分数的方法。即:先把混循环小数化成纯循环小数的形式,然后再化成分数。上面三个例题通过推导,都可以得到证明。
由此可见,采用先扩大后缩小相同倍数的方法,根据纯循环小数化成分数的方法,证明混循环小数化成分数的方法是完全成立的。
什么是纯循环小数什么是混循环小数
1.循环小数依照循环开始的数位的不同,可以分为纯循环小数和混循环小数。
2.纯循环小数:从小数部分第一位开始循环的循环小数,也就是从十分位开始循环的小数,例如0.33333...是从十分位3开始循环。
2.混循环小数:从十分位后的数位开始循环的小数,例如0.16666...是从百分位开始循环。
什么叫纯循环小数?什么叫混循环小数?
从小数部分第一位开始的循环小数,称为纯循环小数。纯循环小数是从十分位开始循环的小数,如0.33333333...(1/3),0.1428571428571....(1/7)等。顾名思义,纯循环小数就是在纯小数的基础上变成循环小数。
一个数的小数部分从某一位起,一个或几个数字依次重复出现的无限小数叫循环小数(circulating decimal)。循环节不是从小数部分第一位开始的,叫混循环小数 。例如:1.2333333……、13.0984343434343……等。我们可以观察到:1.2333333……的循环节在3上面。
扩展资料:
一、纯循环小数特点
1、分母只含有2或5的因数的最简分数,可以化为有限小数。
2、分母中含有2或5以外的因数的最简分数,可以化为循环小数,但不一定是纯循环小数。
3、若最简分数a/b的分母b只含有2和5以外的质因数(即b的质因数不包括2和5),则该分数能化为纯循环小数。
二、混循环小数化分数
1、方法描述
一个混循环小数的小数部分可以化成分数:
这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0。其中9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
2、举例
0.13333……化为分数
分子:13-1=12
分母:循环节1位,不循环部分1位,因此是90
即0.13333……=12/90=2/15
参考资料来源:百度百科-纯循环小数
参考资料来源:百度百科-混循环小数
纯循环小数和混循环小数是什么?
纯循环小数指的是从小数部分第一位开始的循环小数 ,亦就是在纯小数的基础上变成循环小数。纯循环小数是从十分位开始循环的小数,如0.3333333..(1/3),0.1428571428711...(1/7)等。
混循环小数是指不是第一位开始循环的小数 ,如0. 6666666..(1/6).0.009090909...(1/110)等。
循环小数:
1、小数部分的位数是有限的小数叫作有限小数;小数部分的位数是无限的小数,叫作无限小数。循环小数是无限小数。
2、一个循环小数的小数部分,依次不断重复出现的数字,叫作这个循环小数的循环节。如5.33……循环节是3。 7.14545……的循环节是45。
3、循环节从小数部分第一位开始的,叫作纯循环小数;循环节不是从小数部分第一位开始的,叫作混循环小数。
4、循环小数的简便记法:省略后面的“……”号,在第一个循环节上加点。如:5.33……=5.3,读作五点三,三的 循环;7.14545……=7.145 ,读作七点一四五,四五的循环。如果循环节有三个及以上,就在头尾的数字上打点。如7.123123……=7.123。
纯循环小数和混循环小数是什么?
纯循环小数就是在纯小数的基础上变成循环小数。混循环小数是从十分位后开始循环的小数。
纯循环小数的特点
1、分母只含有2或5的因数的最简分数,可以化为有限小数。
2、分母中含有2或5以外的因数的最简分数,可以化为循环小数,但不一定是纯循环小数。
3、若最简分数a/b的分母b只含有2和5以外的质因数(即b的质因数不包括2和5),则该分数能化为纯循环小数。
纯循环小数化成分数
只要根据小数的最低位是什么数位,用10、100、1000等做分母,就可以直接化成分数,不是最简分数的,要约成最简分数。
把纯循环小数化成分数,并不像有限小数那样,用10、100、1000等做分母,而要用9、99、999等这样的数做分母,其中“9”的个数等于一个循环节数字的个数;一个循环节的数字所组成的数,就是这个分数的分子。
“纯循环小数”和“混循环小数”是什么意思?
循环小数:一个数的小数部分从某一位起,一个或几个数字依次重复出现的无限小数叫循环小数(circulating decimal)。循环小数会有循环节(循环点)。
混循环小数:混循环小数是指不是第一位开始循环的小数,如0.1666666666...(1/6),0.009090909....(1/110)等。
混循环小数与纯循环小数是相反的。整数部分是零的小数,称为纯小数.循环节从小数部分第一位开始的循环小数,称为纯循环小数.纯循环小数是从十分位开始循环的小数,如0.33333333...(1/3),0.1428571428571....(1/7)等,纯循环小数个位可为非零自然数
今天的百科内容先分享到这里了,读完本文《「什么是混循环小数」什么是循环小数》之后,是否是您想找的答案呢?想要了解更多百科知识,敬请关注宝百科,您的关注是给小编最大的鼓励。